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Executive Summary 
 

Micromobility travel modes, including electric scooters or e-scooters, have been increasingly 
deployed in dense-activity urban uptown or downtown areas. Charlotte, North Carolina (NC) has 
deployed shared e-scooters in its uptown. E-scooters provide a convenient, low-cost, and carbon-
free travel option, compared with regular travel modes (cars and transit buses), to serve “short- 
and medium-distance” travel needs in urban areas. With the success of e-scooter services, scooter 
mobility service providers and companies, such as Spin and Bird, have accumulated a huge amount 
of e-scooter travel and operation data. The e-scooter travel data includes user travel and vehicle 
operation details, which are valuable for micromobility stakeholders and city agencies to 
understand micromobility travel patterns and the potential benefits of deploying e-scooters and 
other micromobility options in the areas.   

This project aims to process and analyze the raw e-scooter data of uptown Charlotte, NC to capture 
the characteristics of e-scooter users' travel patterns. Detailed user travel activity and movement 
(e.g., origin-destination pairs, routes, and durations) are accessed and summarized. First, a 
descriptive analysis of basic statistics has been performed, including the number of pickup and 
drop-off locations, vehicles, periods, and events. Also, trip statistics and distributions (e.g., travel 
time, distance, and speed) are produced. Next, a temporal-spatial analysis has been conducted to 
offer critical observations of e-scooter trip-level activity in spatial and temporal dimensions, like 
peak hours and hotspots. With that, Charlotte’s micromobility travel patterns and insights are 
identified. Furthermore, e-scooter data has been integrated with land use, census block groups, and 
transit data and analyzed at micro and macro levels. The micro-level analysis has been conducted 
at the travel point level, where each point represents either pickup or drop-off. The accessibility to 
transit and land use characteristics are analyzed. These trips were aggregated at the census block 
group level for a macro-level analysis, which provides insights into travel demand patterns, origin-
destination matrix, production-attraction of census block groups, and accessibility to e-scooter 
pickup and drop-off locations. 

The analysis offers critical new perspectives on the intricate dynamics of e-scooter mobility in 
Charlotte. The produced e-scooter travel patterns can be applied to enhancing mobility services, 
such as microtransit and e-bikes, in Charlotte and possibly other cities in NC. This comprehensive 
approach is essential to creating an urban environment that is more accessible, efficient, and 
inclusive for both locals and tourists.  
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Introduction 
The transportation landscape is experiencing a rapid transformation with the widespread adoption 
of micromobility vehicles. SAE J3194 defined a powered micromobility vehicle as a wheeled 
vehicle that must be fully or partially powered, have a curb weight of <= 500lb, and have a top 
speed of <= 30mph [1]. Micromobility vehicles are classified into (a) powered bicycles, (b) 
powered standing scooters, (c) powered seated scooters, (d) powered self—balancing boards, (e) 
powered non-self-balancing boards, and (f) powered skates. In 2019, people took 136 million trips 
on shared bikes and scooters, a 60% increase from 2018 [2]. The National Association of City 
Transportation Officials (NATCO) reported that 730 million trips have been made in the United 
States and Canada since 2010 using shared micromobility [3]. Dissecting the temporal trend, 
NATCO reported that shared micromobility trips using station-based bikes, dockless bikes, and e-
scooters have increased by 40% since 2018 and were one of the modes used in the pandemic and 
post-pandemic era. 

E-scooters have emerged as a transformative mode of urban transportation, providing a flexible, 
efficient, and eco-friendly alternative for short-distance and medium-distance travel. These electric 
scooters have gained widespread popularity in cities worldwide because they alleviate traffic 
congestion, reduce greenhouse gas emissions, and enhance first- and-last-mile connectivity, 
addressing key urban mobility challenges [4]. Studies have shown that e-scooters can significantly 
improve urban mobility by offering a convenient and accessible means of transportation, 
particularly in densely populated areas where traditional vehicular travel is often impractical. 
Additionally, they complement public transportation systems by bridging the gap between transit 
stops and final destinations, thus encouraging greater use of public transportation. E-scooters also 
reduce urban air pollution and noise, promoting a healthier and more sustainable urban 
environment. 

Given the growing importance of micromobility solutions, there is a pressing need to analyze e-
scooter travel patterns to optimize their integration into urban transportation networks. This project 
aims to process and analyze the raw e-scooter travel data in uptown Charlotte, North Carolina 
(NC) to capture the characteristics of e-scooter users' travel patterns at trip, micro, and macro 
levels. Understanding e-scooter users’ travel patterns, like where and when e-scooters are used 
most frequently, can inform city planners and policymakers about infrastructure needs, identify 
high-demand areas, and improve service efficiency, demonstrating the practical implications of 
such research. Analyzing travel patterns also aids in assessing the impact of e-scooters on traffic 
flow, safety, and urban mobility dynamics, providing valuable insights for developing sustainable 
urban transportation strategies. 

Literature Review 
E-scooters as a First- and Last-Mile Connectivity 
Research indicates that the temporal and spatial usage patterns of e-scooters exhibit similarities 
with notable differences. For both first- and last-mile trips, the majority occurred in the evening, 
peaking between 4 pm and 7 pm, with a smaller rise in the morning peak hours (6 am – 9 am). 
This suggests that many users ride shared e-scooters to connect with transit for commuting or 
school trips [5]. Spatially, transit-connecting e-scooter trips decrease as the distance from the urban 
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core increases. A study of Washington, D.C. and Baltimore metropolitan areas indicated that most 
fast- and last-mile trips are concentrated near the National Mall, the central business district, and 
the Potomac River, where transit infrastructure density is highest [6]. Conversely, a minimal share 
of trips occurs at the district's periphery, including traditionally underserved neighborhoods. 
Shaheen and Chan (2016) reviewed the history of shared mobility, highlighting the potential role 
of shared bikes and e-scooters in promoting multimodality by serving first- and last-mile trips [7]. 
Further, Shaheen and Cohen (2018) discussed the convergence of trends leading to fundamental 
changes in public transportation, emphasizing the potential of shared micromobility as last-mile 
connectors to transit [8]. 

Equity of E-scooters 
Mooney et al. (2019) combined dockless bike location data with socio-demographic data from 
Seattle, Washington [9], and found that most neighborhoods had good access to dockless bikes, 
with fleets concentrated in well-educated and well-resourced communities. Populus (2018) 
reported that e-scooters are viewed positively by a majority (70%) of survey respondents, who see 
them as expanding transportation options, supporting a car-free lifestyle, and replacing short-
distance driving trips [10]. In Washington, D.C., residents can access e-scooters more easily than 
Capital Bikeshare (CaBi) bikes, relative to the walking distance to the nearest available fleet [11]. 

A study from San Jose, California found that 72% of scooters were parked on sidewalks, with most 
(23%) on adjacent properties. These scooters were often just off the sidewalk, in the setback 
between sidewalks and buildings. Over half of these were on off-street private property. Only 1% 
were parked on the vehicular right-of-way of streets [12]. 

E-scooter Travel Patterns 
Location parameters significantly influence e-scooter usage. Areas around universities, central 
business districts, restaurants, bars, and markets show higher e-scooter utilization. The presence 
of bus stops, bike share stations, and dedicated bike lanes increases public use of e-scooters [13].  

Multiple studies confirm that e-scooters are suitable for short trips [14-16]. E-scooter trips are 
prevalent in recreational areas, student populations, and low-income populations, highlighting 
their broad societal impact [17, 18]. Schools and bus stops are popular e-scooter destinations in 
Louisville, Kentucky [16]. Factors such as commercial and industrial land use percentages, walk 
scores, and bike scores influence e-scooter trip density at the traffic analysis zone (TAZ) level [19]. 
In downtown Austin, most e-scooter usage consists of outflow trips, with destinations near but 
outside the downtown area. Similar trends are observed in the west part of the University of Texas 
campus, which is densely populated with student housing units, suggesting students use e-scooters 
to commute from residences to various destinations. However, the University of Texas campus 
primarily serves as an inflow hub, making it a primary destination for e-scooter trips [20]. 

Environmental Impact 
The environmental impacts of e-scooters have been extensively studied. Hollingsworth et al. (2019) 
present evidence that e-scooters can reduce the carbon footprint of urban transportation by 
contrasting their emissions with traditional motor vehicles, underscoring their potential 
environmental benefits [21]. Smith and Schwieterman (2018) evaluated the mobility benefits of e-
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scooters in Chicago, Illinois, highlighting significant time savings and proposing that e-scooters 
are a viable alternative to private vehicles for short trips (0.5 to 2 miles) [22]. This suggests that e-
scooters can help significantly reduce traffic congestion and carbon emissions, addressing urban 
mobility challenges. 

Data 
For the present study, data from different sources was collected and integrated to analyze e-scooter 
travel patterns comprehensively. For example, land use, census block group, and transit stop data 
were collected from publicly available open data sources, whereas the e-scooter data was acquired 
from the e-scooter operator (Spin) at Charlotte, NC. The different datasets are explained in detail 
next.  

E-Scooter Data 
The e-scooter data in the format of General Bikeshare Feed Specification (GBFS) for five non-
consecutive days over four weeks, from October 4 to November 6, 2019, was provided by Spin. 
The GBFS data attributes include provider identification, device and vehicle specifics, event types 
with reasons, precise timestamps, global positioning system (GPS) coordinates of the trip location, 
and battery levels. Vendors have used various strategies to generate scooter IDs, and Spin assigns 
a unique ID to the same e-scooter over time [23]. This GBFS data was processed, and only trip-
specific attributes, such as e-scooter ID, timestamp, location, and event type were used for the 
analysis. 

The e-scooter data encompasses 1,000 records detailing various e-scooter usage events within 
Charlotte, NC. The unique device ID to track individual e-scooters was used to filter the data and 
identify complete trips. All locations with the same device ID were grouped, and a sequence was 
determined based on timestamps, associated trip ID, and event reason types (user pickup or drop-
off). By examining this sequence, each alternate user pickup was identified as the start of a trip, 
with the corresponding (with the same associated trip ID) user drop-off marking the end of that 
trip. Additionally, 260 trip records were removed due to missing values not associated with a 
passenger ride, such as maintenance pickups, drop-offs only, and low battery. This rigorous 
filtering process meticulously filtered through the 1,000 records, ultimately identifying 598 
relevant events with 299 pickups and drop-offs, which, when combined, represented 299 complete 
e-scooter trips. Each of these 299 trips provided rich data locations, including categorical event 
reasons, precise timestamps, and GPS coordinates for the trip's origin and destination. This detailed 
data was the foundation for analyzing the trip patterns and characteristics. 

Land Use Data 
The land use data was downloaded from the Mecklenburg Open Mapping portal, which contains 
the entire Mecklenburg County land use. Only the parcels aligning with the e-scooter data were 
analyzed. The shapefile contains the existing land use type, verified date, jurisdiction, and county 
details. 

Census Block Group 
The census block group data contains several socioeconomic, household, and population data, 
which were integrated from various American Community Survey data collected at five-year 
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intervals. Data for the year 2019, from the United States Census Bureau data portal, was collected 
to align with the e-scooter data. 

Transit Stops Data 
The transit stop data was downloaded from the Charlotte Data Portal to evaluate the accessibility 
to and from the e-scooter pick and drop-off location. The Charlotte Area Transit System (CATS) 
has several transit types serving Charlotte, NC. The Lynx Blue Line light rail transit has 26 stops, 
11 of which feature a park-and-ride facility, and the Charlotte Area Transit System (CATS) bus 
service encompasses 2,992 stops throughout the city.  

Different data, such as the transit stop data, the census block group data, and land use data, were 
integrated with the e-scooter data using ArcGIS Pro to comprehensively analyze e-scooter trips at 
micro and macro levels.  

Data Analysis Methodology 
The e-scooter and corresponding data are analyzed to understand e-scooter travel patterns. First, a 
descriptive analysis of e-scooter trips has been performed to understand the basic statistics and 
distribution of the data. Next, a temporal-spatial analysis has been conducted to offer critical 
observations of e-scooter activity in spatial and temporal dimensions. With that, Charlotte’s e-
scooters’ travel patterns and insights are identified. Based on that, the e-scooter data has been 
integrated with land use, socio-demographic census block groups, and transit data and analyzed at 
micro and macro levels. The micro-level analysis has been done at the point level, where each 
point represents one event, either pickup or drop-off, from the filtered data. Since the trip 
information does not have much information apart from the start and end locations, these trips 
were aggregated at the census block group level for a macro-level analysis. The macro-level 
analysis provided insights into travel patterns and accessibility to e-scooter pick and drop-off 
locations at the census block group level.  

Analysis Results 
Descriptive Analysis for E-scooter Trips 

Basic Statistics of E-scooter Trips 
The e-scooter data provides trip-related information, including when and where the user picks up 
and drops off the e-scooter. Though the detailed trip routes are not provided, Google Direction 
Application Programming Interface (API) can give approximate route given origin and destination 
in walking mode, considering the path similarity between the e-scooter route and the walking route 
[24]. Since the travel time of the e-scooter trips is determined by the e-scooter’s pickup and drop-
off timestamps, the travel speed can be estimated by the division of API route distance and travel 
time. Thus, statistics related to trip distance duration and speed can be obtained. As shown in 
Figure 1, 299 e-scooter trips are sparsely distributed across a few hours for each date. 
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Figure 1: Heatmap of Hourly E-scooter Trip Count Each Day 

19 is higher than others because the trip data was collected from three hours in the early morning 
of 11/06/2019, while on other days, the trip data was collected from afternoons. 

Table 1 shows the basic statistics of e-scooter trip features of Charlotte, NC. For the study period 
of each date, the average travel time was 7.62 mins, the average travel distance was 0.66 miles, 
and the average travel speed was 6.12 mph. It can be observed that 10/20/2019 (Sunday) has the 
greatest number of trips and e-scooters in operation per hour and has the highest average travel 
time. Besides, the average travel speed of e-scooter trips on 11/06/2019 is higher than others 
because the trip data was collected from three hours in the early morning of 11/06/2019, while on 
other days, the trip data was collected from afternoons. 

Table 1: Basic Statistics of E-scooter Trips Feature in Charlotte, NC 

Date 
Trip count 
per hour 

Operational e-
scooter per hour 

Total mileage 
traveled per 

hour 

Average trip 
distance (mi) 

Average 
travel time 

(min) 

Average speed 
(mph) 

Day of week 

10/4/2019 
(2 hours) 

30 25 18.40 0.61 7.95 5.48 Friday 

10/9/2019 
(3 hours) 

24 23 15.23 0.63 6.94 6.53 Wednesday 

10/14/2019 
(3 hours) 

22 19 14.67 0.66 7.85 5.41 Monday 

10/20/2019 
(1 hour) 

54 52 34.65 0.64 10.26 4.57 Sunday 

11/06/2019 
(3 hours) 

15 14 11.26 0.73 5.11 8.63 Wednesday 

Average 29 27 18.84 0.66 7.62 6.12 -  
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Distribution and T-test of Travel Time and Travel Distance 
Aside from the general statistics, the distribution of travel time and distance on each day is shown 
in Figure 2. The figure illustrates that the travel distance of most trips ranged between 0.17 miles 
and 0.86 miles, and the travel time of most trips was between 3.18 mins and 13.88 mins. The travel 
distance on 11/06/2019 is generally higher than those on other days, while the travel time on 
11/06/2019 is generally lower than other days. It might be because the trip data for 11/06/2019 
was collected in the morning, while the trip data was collected in the afternoon for other days. 
Morning e-scooter trips may be longer in distance and faster in speed due to the purpose of 
commuting 

(a) (b) 
Figure 2: Travel Distance (a) and Travel Time (b) on Each Day 

A statistical t-test was applied to test the e-scooter travel patterns for weekdays and weekends. 
Since the data from 11/06/2019 was collected in the morning, which might have a different pattern 
from the afternoon data, it was excluded from the statistical test. Thus, a t-test was applied to the 
travel distance, travel time and travel speed for the remaining four days, with three weekdays and 
a Sunday. The test results, including the mean value on weekdays and weekends, t statistic and p-
value, are illustrated in Table 2. It shows that although there is no difference in trip distance 
between weekends and weekdays, the travel time is significantly higher on weekends than on 
weekdays, and the speed is significantly lower on weekends. 

Table 2: Statistical Test on Travel Pattern between Weekdays and Weekends (Exclude 11/6/2019) 

  Mean weekdays Mean weekends t_stat p_value 
Trip distance (mi) 0.636 0.642 -0.008 0.939 
Travel time (min) 7.55 10.26 -2.7 0.007* 

Speed (mph) 5.84 4.57 2.554 0.011* 

E-scooter Trip Clustering Analysis 
Besides the statistical analysis, clustering analysis was also applied to classify the trips based on 
the trip distance to learn their differences. Mean-shift clustering approach, a non-parametric 
algorithm that clusters data iteratively by finding the densest regions (clusters) in a feature space 
[25], was used in the study. The histogram in Figure 3 indicates the travel distance clustering 
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results. Four clusters were obtained, namely short trip clusters, median trip clusters, long trip 
clusters and the outlier. Trips with distances less than 0.54 miles are considered short trips; trips 
with distances greater than 0.54 miles and less than 1.1 miles are seen as median trips, while long 
trips have distances greater than 1.1 miles and less than 2.2 miles. Trips greater than 2.2 miles are 
considered outliers.  

The clustering result is consistent with the literature: Smith et al. found that e-scooters would be a 
powerful alternative to private automobiles for trips between 0.5 miles and 2 miles [22]; Daniel et 
al. pointed out that e-scooters are typically used for trips between 0.3 miles to 2.5 miles [26].  

 

Figure 3: Mean Shift Clustering Based on the Trip Distance 

Table 3 illustrates the features for trips in each cluster, including average trip distance, travel time 
and speed, for all clusters. It indicates that the average speed for short trips is much less than that 
of median trips, while the average speed for long trips is slightly more than that of median trips. It 
might be because the travel time includes stop time during the trip in this study. Shorter trips are 
more vulnerable to being impacted by the trip stops. They may have more stops since they mainly 
connect people traveling in the city's downtown area, where more traffic lights complicate the 
traffic conditions.  

Table 3: Details of the Clusters 

  Number of trips 
Average trip distance 

(mi) 
Average travel time 

(min) 
Average speed 

(mph) 
Short Trips 

(0 mi - 0.54 mi) 
140 0.26 6.18 4.30 

Median Trips 
(0.54 mi -1.1 mi) 

115 0.76 7.24 7.42 

Long Trips 
(1.1mi - 2.2 mi) 

43 1.58 13.28 7.96 

Outlier (>2.2 mi) 1 2.76 22.53 7.36 

Figure 4 shows the spatial distribution of the four trip clusters. Overall, most e-scooter trips are 
around the city center and along the Charlotte rail trail, meaning that the e-scooters are mainly 
used to travel within the city center or commute to/from railway stations. It can be observed that 
short and median trips mostly connect people between locations in the city center or between 
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railway stations and nearby residential areas; long trips mostly connect people between the city 
center and nearby residential areas directly. 

  
(a) (b) 

  
(c) (d) 

Figure 4: Spatial Distribution of (a) Short Trips, (b) Median Trips, (c) Long Trips, and (d) Outliers 

Micro-level Analysis 
The locations from the filtered e-scooter data with pickup and drop-off locations were analyzed 
separately at a micro-level. Density maps were developed for visualizing e-scooter trips’ pickup 
and drop-off locations to analyze the spatial patterns of e-scooter usage and identify e-scooter 
pickup and drop-off “hotspots.” Moreover, the land use characteristics were also assessed to 
examine how land use characteristics influence the number of e-scooter trips. E-scooter pickup 
and drop-off location and the accessibility to transit stops were investigated to indicate first- and 
last-mile connectivity to public transportation.  

Spatial Distribution and Hotspots 
The Kernel Density tool from ArcGIS Pro was used to visualize the spatial distribution of e-scooter 
pickup and drop-off location “hotspots” with Charlotte’s Lynx Blue Line light rail transit stations, 
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and the results are presented in Figure 5. These figures offer valuable insights into the spatial 
patterns of e-scooter usage within the city and assist in identifying hotspots of pickup and drop-
off locations.   

  
(a) (b) 

Figure 5: Hotspots of (a) Pickup and (b) Drop-off Locations 

The pickup and drop-off locations exhibit the highest density in the uptown area of Charlotte, NC. 
The uptown area is a focal point for e-scooter activity, with usage gradually diminishing with an 
increase in the distance from the center. Such a concentration suggests that e-scooter usage is most 
prevalent in Charlotte's uptown, likely owing to heightened activity levels and enhanced 
accessibility. If Figure 5 (a) is carefully examined, multimodality in the Kernel Density map can 
be observed, highlighting multiple pickup hotspots. However, in the case of drop-offs, one giant 
hotspot in uptown Charlotte is observed, suggesting that most of the trips end uptown, where the 
activity level is higher.  

The Kernel Density maps, when overlapped with the transit stop data, revealed that numerous 
pickup and drop-off locations align closely with the Lynx Blue Line light rail transit and its stations. 
It implies that e-scooters play a crucial role in facilitating first- and last-mile connectivity to public 
transportation, thereby augmenting the overall efficiency and accessibility of the urban 
transportation network. In essence, these density maps provide a visual representation of e-scooter 
distribution and offer valuable insights into usage patterns, highlighting the pivotal role of e-
scooters in Charlotte's urban mobility landscape. Moreover, the correlation with transit stops also 
provides insights into (a) accessibility to transit stops or stations from e-scooter drop-off and (b) 
accessibility to e-scooter pick-up from transit stops or stations.  

Accessibility to Transit 
The city of Charlotte has an extensive public transportation network. To understand how people 
use e-scooters as a first- and last-mile connection option, the walk access to transit stops from the 
e-scooter drop-off locations and walk access to e-scooter pickup locations were evaluated in terms 
of walking distance. This distinction is crucial for accurately understanding how e-scooters are 
used in public transportation, providing insights into the first- and last-mile connectivity offered 
by e-scooters. This analysis helps identify potential areas for improving the integration between e-
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scooter hubs and transit stops, enhancing overall accessibility and user convenience. The 
accessibility to transit is evaluated in terms of walking distance computed using the network 
analysis toolbox in ArcGIS Pro by integrating the network layer, transit stop layer, and e-scooter 
location layer. The walk access was evaluated separately for light rail transit and CATS stops. 
Figure 6 illustrates the distribution of walk access in terms of walking distance for light rail transit 
and CATS stops.  

  
(a) (b) 

  
(c) (d) 

Figure 6: Distribution of Distances (a) from a Drop-off Location to the Blue Line Light Rail Transit Station and (b) from the Blue 
Line Light Rail Transit Station to a Pickup Location; (c) from a Drop-off Location to a CATS Bus Stop and (b) from a CATS Bus 
Stop to a Pickup Location 

The average distance from an e-scooter drop-off location to the nearest Lynx Blue Line light rail 
station is approximately 0.37 miles, with a standard deviation of 0.34 miles. Similarly, the average 
distance from the Lynx Blue Line light rail transit station to an e-scooter pickup location is 
approximately 0.36 miles, with a standard deviation of 0.34 miles. Both distributions indicate that 
most e-scooter trips either begin or end within half a mile of Lynx Blue Line light rail transit 
stations, underscoring the effectiveness of e-scooters as a first- and last-mile connectivity solution.  

The average distance from a CATS bus stop to an e-scooter pickup location is approximately 0.13 
miles, with a standard deviation of 0.10 miles. The distribution of distances from an e-scooter 
drop-off location to a CATS bus stop shows a similar pattern, with an average distance of 
approximately 0.14 miles and a standard deviation of 0.13 miles. Most e-scooter pickups and drop-
offs are clustered within 0.15 miles of CATS bus stops, highlighting their proximity to the transit 
service. 
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Figure 6 exhibits unimodal distribution, suggesting that most of the trips are clustered. When both 
transit services are compared, the CATS bus service is more accessible to e-scooter locations, 
which can be attributed to the large number of bus stops in the region. 

Land Use Characteristics 
Land use characteristics were analyzed to evaluate their influence on e-scooter trips. This involved 
categorizing and overlaying land use data with e-scooter trip origins and destinations. Figure 7 
presents the distribution of e-scooter pickup and drop-off trips by land use type. From the figure, 
vertical mixed-use, multi-family, and retail establishments significantly contribute to e-scooter trip 
generation and attraction. These land use categories correlate with higher volumes of e-scooter 
trips, suggesting a solid affinity between urban development patterns and e-scooter usage. On the 
contrary, the trips produced and attracted are fewer in places with less activity, such as vacant land 
and warehouses. 

 

Figure 7: Land Use Characteristics of E-scooter Trips 

Macro-level Analysis 
The macro-level analysis provides a comprehensive view of the e-scooter travel patterns at an 
aggregated level. Since the trips only have start and end points, they were aggregated at the census 
block group level. E-scooter access for every census block group (restricted to e-scooter data) is 
evaluated. The origin-destination (OD) matrix and production-attraction table are also developed, 
providing further insights into travel demand patterns at an aggregated level.  

Accessibility in Census Block Groups 
The accessibility of e-scooters within census block groups determines how easy it is for residents 
and visitors to access and ride the available e-scooters, which is essential for promoting their use 
as a viable transportation option. It depends on the average distance from the users ride request 
locations to the available e-scooter locations. Since the detailed users’ ride request locations or 
resident house locations are not available, the centroid of a census block group was used as a proxy 
like most travel demand models do. In this analysis, accessibility is measured in the form of a 
distance from the centroid of a census block group to pickup and drop-off locations. For instance, 
if the average distance from the centroid of a census block group to a pickup or drop-off location 
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in that census block group is less than ¼ mile, then the census block group is considered as highly 
accessible. Lower accessibility indicates pickup and drop-off locations are located far from the 
centroid of that census block group. One can measure the service quality and supply of the e-
scooters in that census block group by using accessibility as a measure.  

Only those census block groups where e-scooter data was available were included in this analysis, 
ensuring that the findings are relevant and accurate for the areas where e-scooter usage is recorded. 
This information can guide the strategic placement of e-scooters or e-scooter hubs to enhance 
coverage and convenience. Improving accessibility in underserved areas will increase e-scooter 
adoption, reduce reliance on personal vehicles, support more sustainable urban mobility, and 
ensure equitable access.  

  
(a) (b) 

Figure 8: Accessibility to (a) Pickup Locations and (b) Drop-off Locations in Census Block Groups 

Figure 8 illustrates the accessibility of e-scooter pickup and drop-off locations within each census 
block group in Charlotte. For pickup locations in Figure 8 (a), the map shows that uptown Charlotte 
has high accessibility, suggesting dense e-scooter availability within a walkable distance from the 
centroid. As the distance from the core increases, accessibility decreases, with several peripheral 
block groups having greater distances to the nearest pickup location. The pattern for drop-off 
locations in Figure 8 (b), is similar, with most drop-off locations clustered close to the census block 
centroids in central areas. This accessibility can change based on where the user drops off the e-
scooters and the number of points inside each census block group. Some census block groups in 
the data have only one pickup and drop-off location which is located close to the centroid of that 
census block group, resulting in high accessibility for that census block group. 

These findings underscore that while central areas are well-served by e-scooters, there are 
opportunities to enhance e-scooter availability in peripheral regions. Improving accessibility in 
these areas can increase e-scooter adoption, reduce reliance on personal vehicles, and promote 
sustainable urban transportation. Since the e-scooter service is dockless in Charlotte, the e-scooters 
can be parked anywhere and picked up from anywhere, resulting in varying distances from the 
centroids. There might be some outliers within the census block group, which also might be 
responsible for the larger average. 
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Origin-Destination (OD) Matrix 
Developing the OD matrix of e-scooter travel is an important performance measure in 
understanding e-scooter travel patterns. 

 

Figure 9: Desired Line Diagram Indicating OD Trip Flow of E-scooters  

The OD matrix visualization presented in Figure 9 depicts e-scooter trip patterns across Charlotte, 
NC, aggregated at the census block group level. The map shows lines connecting the centroids of 
the census block groups having the origins and destinations of e-scooter trips, creating a network 
that illustrates e-scooter movement flows within the city at the census block group level. The 
thickness of the line represents the number of trips; the thicker line indicates there were more trips 
between the two census block groups connected by that line.  

A key observation is the high concentration of trips in uptown Charlotte, where the densest cluster 
of lines converges, indicating that uptown is a significant hub for e-scooter activity. This reflects 
the high demand for short-distance travel options in the city center, where economic and social 
activities are concentrated. Additionally, the lines extend outward from the uptown to various other 
census block groups, demonstrating that e-scooter usage is not confined to the city center but also 
to nearby residential and peripheral areas.  

Many OD lines are parallel major transit routes, particularly the Lynx Blue Line light rail transit, 
suggesting a solid interplay between e-scooter usage and public transportation. The map also 
shows a wide range of trip distances, reflecting diverse usage patterns with some lines spanning 
several miles, indicating that e-scooters are used for various trip purposes, including commuting, 
leisure, and errands. While this map only shows interzonal trips, a significant number of intrazonal 
trips were also identified, which are not shown in the desired line diagram. Overall, the OD matrix 
visualization aids in understanding the spatial dynamics of e-scooter trips in Charlotte, highlighting 
areas with the highest activity and the connectivity provided by e-scooters between different parts 
of the city. 
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Production-Attraction of Census Block Groups 
The high levels of e-scooter trip productions and attractions in specific census block groups can 
be attributed to the land use characteristics of these areas. Land use significantly determines the 
demand for e-scooter services, as different land uses generate varying trip activity levels. 

  
 

(a) (b) 
Figure 10: Number of (a) Productions and (b) Attractions by Census Block Group 

Figure 10 shows that most e-scooter trips are produced in and attracted to the uptown area. The 
census block group with a darker color (e.g., red) has more productions and attractions. The census 
block groups with more productions and attractions have been identified, and the corresponding 
land characteristics are analyzed to understand why they have higher activity levels. A similar 
pattern can be observed when overlaid with the Kernel Density maps. This variation may be 
attributed to uptown Charlotte's higher supply of e-scooters.  

Census Tract 1 of Block Group 1, marked as 1, shows the highest number of productions (42) and 
attractions (45). The high activity levels can be linked to its diverse land use mix. This area 
includes a dense concentration of commercial establishments, office buildings, retail stores, and 
recreational facilities. These amenities attract commuters, shoppers, and visitors, increasing the 
demand for e-scooter trips to and from this area. Similarly, Census Tract 4 of Block Group 1, 
marked as 2, shows high production (43), including multi-family residential complexes and 
single-family detached housing. These facilities typically generate high trips as people use e-
scooters for their first- and last-mile connectivity needs. 

Conclusions and Discussion 
This project aims to process and analyze Charlotte’s e-scooter travel data. A descriptive analysis 
of e-scooter trips has been conducted. Along with other datasets, like land use, transit, and census 
block groups data, the travel patterns of e-scooters in Charlotte, NC have been explored.  

After analysis, most e-scooter activity is concentrated in Charlotte's center districts. Further 
investigation into the dynamics of e-scooter mobility reveals that land use patterns have a 
significant influence. Hotspots for e-scooter participation are areas with mixed-use developments, 
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active shopping districts, and dense residential communities. These busy places are hubs where 
locals and tourists congregate for various events, which fuels the need for practical and effective 
micromobility solutions. Furthermore, a significant relationship has been identified between using 
e-scooters and the accessibility of the city's transit system, specifically the CATS-managed Lynx 
Blue Line light rail transit. The analysis supports the inherent connection between the availability 
of transportation services and the use of e-scooters. Remarkably, many e-scooter trips start or end 
near transit stops. This mutually beneficial partnership highlights how e-scooters may enhance 
first- and last-mile connectivity, supplement conventional public transportation, and promote a 
more comprehensive approach to urban mobility. 

The findings also demonstrate how the census block groups in uptown have improved accessibility 
to e-scooters and function as centers for trip generation and attractiveness. The analysis offers 
critical new perspectives on the intricate dynamics of e-scooter mobility in Charlotte. This 
comprehensive approach is essential to creating an urban environment that is more accessible, 
efficient, and inclusive for both locals and tourists. 

Future Work 
The current findings are limited to analyzing limited e-scooter data. Future research can expand 
the scope by incorporating a broader range of socioeconomic and other urban activity data, such 
as business activities, large social events, and economic dynamics. This would enable more 
comprehensive modeling based on the characteristics of census block groups. This approach would 
provide a deeper understanding of the factors influencing e-scooter usage, including demographic, 
economic, and social variables. 

Additionally, access to a larger e-scooter dataset will make it possible to assess Charlotte's or North 
Carolina's accessibility and mobility equity more accurately. This expanded dataset would allow 
for a detailed examination of spatial and temporal usage patterns, identifying underserved and 
socioeconomic disadvantaged areas and optimizing the distribution of e-scooters to enhance urban 
mobility. For example, the difference between the original drop-off locations where the companies 
initially placed the e-scooters during their redistribution and the first drop-off locations where 
customers left the e-scooters after the first rides of the day should be investigated to inform vendors 
of a better vehicle distribution plan in time and space. Also, if more safety data is available, e-
scooter safety concerns should be explored.  
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